- Présentation
- Procédures administratives
- Formation doctorale
- Appels d'offres
- Espace Doctorants
Recommandation automatique, temps réel et adaptative d'emojis
Par Gaël Guibon
Dans les messageries sociales les emojis sont parmi les principaux vecteurs d’émotions et de sentiments des individus. Aujourd’hui, les utilisateurs naviguent dans des bibliothèques contenant souvent des milliers d’emojis pour sélectionner celui correspondant à ce qu’ils souhaitent transmettre. Nos travaux visent à développer un système de recommandation automatique d’emoji permettant à l’utilisateur d’identifier un panel réduit d’emojis pertinents étant donnée sa conversation en évitant le parcours de bibliothèques conséquentes d’emojis. Cette recommandation pouvant permettre à l’utilisateur de requêter les phrases susceptibles de contenir cet emoji, et l’émotion qui y est associée. Pour ce faire, dans un premier temps, notre objectif est de développer un outil permettant de prédire automatiquement les emojis d’une phrase à partir d’un modèle de classification.
Dans cet exposé nous couvrons les enjeux d'un tel système dans le contexte actuel, les différentes approches existantes, et enfin celle que nous utilisons. Nous détaillons notamment l'impact des caractéristiques utilisées.